GENERAL BIOLOGY Lecture 13 - DNA Replication & Comparison to Transcription

- I. DNA The Watson Crick Double Helix
 - A. Two helical polynucleotide chains coiled around a common axis 1) 3' to 5' and 5' to 3'
 - B. Purines & pyrimidines on the inside; phosphate & deoxyribose outside
 - C. Two chains held together by hydrogen bonds
 - D. The precise sequence of bases carries the genetic information

II. DNA replication

- A. Semiconservative replication
 - 1. Produces two DNA molecules that each have one "half-old (mother)" and one "half-new (daughter)" strands
- B. Where does replication begin?
 - 1. Viruses and bacteria one site
 - 2. Eucaryotes several sites
- C. Process
 - 1. DNA polymerases
 - a) Catalyze step-by-step addition of deoxyribonucleotide units to DNA chain
 - b) Proofread newly synthesized strands
 - 2. A primer is required
 - 3. DNA template is essential
 - 4. DNA must be unwound (helicase) and positive supercoiling (gyrase) must be removed
 - 5. Elongation proceeds in the 5' to 3' direction
 - 6. The "other" strand is synthesized with help of Okazaki fragments
 - **Problems mutations**
 - 1. Substitution (most common)
 - 2. Deletion
 - 3. Insertion

III. What DNA encodes

- A. Ultimately (through transcription & translation) protein
- B. DNA is like instructions in a book
- C. The alphabet A, T, G, & C
- IV. Transcription

C.

D.

- A. DNA to RNA
- B. Types of RNA
 - 1. Ribosomal RNA (rRNA) combines with proteins to form ribosomes
 - 2. Messenger RNA (mRNA) the "blueprint" delivered to the ribosome which is translated into protein
 - 3. Transfer RNA (tRNA) matches proteins with triplets encoded by mRNA
 - How transcription differs from DNA replication
 - 1. RNA polymerases assemble transcripts
 - 2. Several stands can be synthesized at one time
 - 3. Only ONE of the two unwound DNA strands is transcribed