- I. Purpose of membranes cellular and organelle
 - A. Continuum of systems nucleus and endoplasmic reticulum
 - 1. "Flow of metabolites"
 - B. Isolation mitochondrion cannot fuse with nucleus
 - 2. "Independent recognition sites"
 - C. Passage of metabolites

2.

- 1. Diffusion from high concentration to low concentration
 - Osmosis movement of water through a differentially permeable membrane
 - a) From high concentration to low concentration
 - b) Selectivity active transport
- 3. Carrier systems
 - a) Chloroplast
 - 1) H⁺ pumped into thylakoid lumen
 - 2) H^+ then transported to outer stroma and coupled to make ATP
 - Mitochondrion
 - 1) **H**⁺ pumped out to intermembrane space
 - 2) H⁺ then transported to inner matrix and coupled to make ATP
- How is specific transport accomplished?

b)

- **Biological membranes**
 - 1. Recognition of ions
 - 2. What recognizes the ions?
 - a) **Proteins in the membrane maybe enzymes**
 - 1) Carrier theory
 - 2) Ion pump (ATPase)
 - 3. Model of a membrane Fluid mosaic model
 - a) Lipid bilayer phospholipids (cholesterol)
 - b) Proteins
 - 1) **Peripheral surface (in and out)**
 - 2) Integral usually through (sometimes partially)
- **III.** Types of transport

В.

П.

A.

- A. Within cells
- B. Between cells
- IV. Transport in vascular tissue
 - A. Passive transport mass flow little or no metabolic involvement
 - 1. Apoplast (dead)
 - a) Xylem (tracheids & vessels)
 - b) Up diffusion adhesion (sticking of unlike) & cohesion (sticking of like)
 - Active transport selective transport (ENERGY) metabolic involvement
 - 1. Symplast (living)
 - a) Phloem (sieve cells)
 - b) Down osmosis