GENERAL BOTANY Lecture 20 - Absorption & Transport

I. Water potential

- A. Water potential (Ψ) = pressure potential (Ψp) + osmotic potential (Ψs) + matrix potential (Ψm)
 - 1. Water potential a measure used to predict the direction of water flow (from high to low)
 - a) Pressure potential turgor pressure (associated with cell growth & expansion)
 - b) Osmotic potential can be used to regulate turgor regulates plant water movement
 - c) Matrix potential force with which water is held to plants by adsorption and capillarity

II. Water and mineral absorption by roots

- A. Absorption of water by roots
 - 1. Driven by transpiration negative pressure in xylem draws water in through free space water must move through living cells of endodermis
 - 2. Root pressure (driving force when transpiration is low high humidity)
 - a) Solutes (sugars) built up in roots cause an osmotic drive of water from surrounding media solution to inner root (i.e., water moves from higher potential to lower potential)
 - b) Xylem transport driven by positive pressure source for guttation

III. Uptake of mineral nutrients

- A. Passive uptake of minerals (mineral ions move freely into free space of cortex)
 - 1. Movement of ions by the "sweeping effect"
 - a) Ions can cross the endodermal cell membranes passively by being "swept" into the stele with water
- B. Active uptake of minerals
 - 1. Energy-requiring transport of ions into cells of the cortex (mostly mineral in low abundance in soil solution nitrate, potassium, sulfate, phosphate, etc.)
 - 2. Movement into xylem is blocked by special barrier (Casparian strip of an endodermis) promotes active transport
 - a) Endodermis (with Casparian strip) requires that molecules pass through a plasma membrane to enter (or leave) the vascular cylinder

IV. Xylem & phloem transport

- A. Mechanism of xylem transport (cohesion-adhesion-tension hypothesis)
 - 1. Tracheids and vessels usually dead, empty cells
 - 2. Transport by bulk flow driven by transpiration
 - a) Transpiration causes "suction" and negative pressure on water in xylem
 - 3. Important characteristics of water
 - a) Cohesion attraction of water molecules to each other
 - b) Adhesion attraction of water to other molecules (like cell walls)
 - c) Tension ability of water to withstand negative pressure
- B. Mechanism of phloem transport (pressure-flow hypothesis)
 - 1. Source is high pressure; sink is low pressure
 - 2. "Source-sink" directionality (photosynthesis is source; meristem is sink)
 - a) Sugar (photosynthate) is actively transported into sieve tube at a source
 - b) Water moves into sieve tube by osmosis
 - c) Water uptake pushes sieve tube sap (photosynthate) towards sink
 - d) Sap (photosynthate) is unloaded at sink;
 - e) Water returns to xylem

V. Mineral nutrition

- A. CHOPKNS CaFe Mg B Mn CuZn Cl Mo
 - 1. CHO carbohydrates
 - 2. P ATP K enzymes & stomates N proteins

S - amino acids Ca - membranes Fe - ETS & photosynthesis Mg - chloro. B - CHO breakdown Mn, Cu, Zn - enzymes

Cl - OEC Mo - enzymes