MOLECULAR CELL PHYSIOLOGY – Overview of Cell Structure & Function

- I. The cell
 - A. Cells are fundamental organizational units of all living things
 - B. Types of cells
 - 2. **Prokaryotic (no true nucleus, no membrane-bound organelles)**
 - a) Simple structure with accommodations for simplicity
 - 1)) Nucleoid (condensed region of DNA)
 - 2)) Mesosome (invagination of cell associated with DNA synthesis)
 - 3)) For gram (-) cells, periplasmic space between inner & outer cell membranes

*** Hereafter, information focuses on eukaryotes unless specified otherwise ***

- 2. Eukaryotic (true nucleus and membrane bound organelles)
 - a) Plant
 - b) Animal
- II. Constituents of a typical cell
 - A. Water, inorganics, and others (sugars, vitamins, fatty acids, etc (75 to 80% by weight)
 - B. Macromolecules including proteins, polysaccharides, and DNA (20 to 25% by weight)
 - 1. Proteins are the most abundant and functionally versatile of the macromolecules

EXAMPLE OF A TYPICAL EUKARYOTIC CELL: A liver hepatocyte cell is generally in the shape of a cube, 15 micrometers per side and has a density of 1.03 g/mL. Converting to centimeters, this means the cell is 0.0015 cm per side and this number cubed (3.375 E-9) is the volume in cubic cm (also mL). With this information, it is possible to calculate cell mass since M = (D)(V). The calculation is (1.03 g/mL)(3.375 E-9 mL) = 3.476 E-9 g. If 20% of the cell weight is protein, this means each cell has (3.476 E-9)(0.20) = 6.95 E-10 g protein. Using an estimated protein mass of 52,700 g/mol (this is the average mass of yeast protein), we can figure out the total number of proteins in cells using Avogadro's number: [(6.95 E-10 g protein)/(52,700 g protein/mol)][6.023 E23 molecules / mol] = 7.95 E9 protein molecules per liver cell. If a typical cell contains 10,000 different proteins, that means a cell contains about (7.96 E9 total protein molecules)/(1 E4 different proteins) = 7.95 E5 molecules of each protein on average per liver cell. The actual range is about 20,000 (insulin-binding protein) to 5 E8 (structural protein, actin) molecules of each protein.

- III. Cytosol vs cytoplasm
 - A. Cytoplasm includes both the cytosol and the organelles
 - **B.** Cytosol typically refers to only the liquid portion of the cytoplasm
 - C. Cytosol also includes fibrous protein referred to as the cytoskeleton
 - 1. Microtubules
 - 2. Microfilaments
 - 3. Intermediate filaments
- IV. Organelles (eukaryotic cells)
 - A. Cell wall (primary and secondary)
 - 1. Plants
 - 2. Support, structure, & protection
 - B. Nucleus
 - 1. Genetic information DNA
 - 2. Cell regulation "the brains"
 - C. Chloroplasts
 - 1. Plants
 - 2. Photosynthesis
 - a) Thylakoids light capture
 - b) Stroma conversion to sugar
 - 2. Contain some DNA

MOLECULAR CELL PHYSIOLOGY – Overview of Cell Structure & Function (continued)

- IV. Organelles (continued)
 - D. Mitochondria
 - 1. Energy from sugars
 - 2. Contain some DNA
 - E. Cytomembrane system
 - 1. Packaging & transport
 - a) Golgi apparatus (dictyosomes)
 - b) Endoplasmic reticulum
 - c) Ribosomes
 - F. Microbodies
 - 1. peroxisomes photorespiration
 - 2. glyoxisomes conversion of fats into sugars
 - G. Microtubles movement & wall synthesis
 - H. Ergastic materials
 - 1. Starch grains storage
 - I. Vacuoles
 - 1. Storage
 - 2. Waste
 - 3. Water regulation
- V. Some information about cell function
 - A. Expression of proteins
 - 1. DNA → [rRNA, mRNA, tRNA] → Protein
 - B. Signaling
 - 1. Signals interact or bind to cell surface receptors on the outer membrane
 - 2. Signal transduction proteins (often intracellular proteins) send signal to the interior
 - **3.** Complex is activated at interior of the cell
- VI. Cell division
 - A. The cell cycle: interphase and mitosis (prophase, metaphase, anaphase, telophase)
 - B. Interphase: "what a cell does for a living"
 - 1. Regulation what the cell will do such as muscles and exercise or red blood cells and oxygen transport
 - 2. If more cells are needed, cell proceeds to mitosis
 - a) Prokaryotes: about 30 minutes
 - b) Eukaryotes: 10 to 20 hours
 - C. Mitosis: prophase, metaphase, anaphase, telophase
 - 1. Mitotic apparatus captures chromosomes
 - 2. Pushes and pulls chromosomes to opposite ends
 - 3. Prophase and metaphase similar in animals and plants
 - 4. Anaphase and telophase differ in animals and plants
 - D. Variations in the cell cycle
 - 1. Cancer: cells multiply but are not needed
 - 2. Tumor: unchecked cell growth
 - 3. Apoptosis: programmed cell death
- VII. Growth and differentiation
 - A. Multicellularity
 - 1. At first, group of cells resulting from division "hang out" together
 - a) Primitive: cells congregate together in and around an extracellular matrix
 - b) Plants: cells stick together with cell adhesion molecules (CAMs) and
 - communicate through plasmodesmata
 - c) Animals: cells around a basal lamina (tough supporting layer underlying cell sheets) and extracellular matrix may be present

MOLECULAR CELL PHYSIOLOGY – Overview of Cell Structure & Function (continued)

- **VII.** Growth and differentiation (continued)
 - **B.** Differentiation results in varying function and morphology
 - 1. In humans, for instance, embryo develops because
 - a) Genes specify pattern
 - b) Cell-cell interactions induce the genetic program
 - 2. Axial symmetry (left and right sides mirror each other) is the most basic pattern
 - a) Result of conserved patterning of genes
 - b) Genes \rightarrow proteins \rightarrow influence other cell adhesion and signaling
 - 1)) Permits integration and coordination of events in different parts of developing embryo
 - C. In humans
 - 1. 100 trillion (E12) cells
 - 2. 3.16 billion (E9) base pairs of DNA in each cell
 - 3. 100,000 genes in human DNA