MOLECULAR CELL PHYSIOLOGY Special Lecture - General, Inorganic, & Organic Chemistry

- **I.** What makes chemistry important?
 - 1. Metabolism
 - 2. Growth and development
 - **3.** Environmental interactions
- II. General & inorganic chemistry
 - A. Units of measure
 - 1. Volume liter
 - 2. Mass gram
 - 3. Length meter
 - B. Chemical units of measure
 - 1. Molecular weight mass of a substance that contains one mole (6.022 X 10²³) of atoms (or molecules)
 - 2. Mole amount of a substance that contains 6.022 X 10²³ atoms (or molecules)
 - 3. Molarity number or moles in one liter of solution
 - C. Metric system
 - 1. kilo 10³
 - 2. centi 10⁻²
 - 3. milli 10⁻³
 - 4. micro 10^{-6}
 - D. Composition of elements 1. Atoms - smallest
 - Atoms smallest portion of an element
 - a) Protons
 - b) Electrons
 - c) Neutrons
 - E. Function of atoms
 - 1. Electron excitation (energy)
 - 2. Chemical bonds
 - a) Covalent share electrons
 - b) Ionic charges attract
 - c) Hydrogen weak attraction of H & O
 - F. Important chemical phenomena
 - 1. Acid / base pH
 - a) Equilibrium
 - b) Availability & solubility of ions
 - c) Buffering capacity
 - 2. Oxidation / reduction
 - a) Donate / accept electrons
 - The reaction, acetaldehyde $+ 2H^+ + 2$ electrons ===> ethanol, represents a reduction of acetaldehyde
 - Organic chemistry carbon chemistry, chemistry of life
 - A. Alkanes, alkenes, and alkynes
 - B. Alcohols, ethers, and amines
 - C. Aldehydes, ketones, and carboxylic acids
 - D. Cyclic compounds and aromatics
- IV. Henderson-Hasselbach equation

HA = H + A

Ш.

Keq = [H][A]/[HA]

pH = -log[H]

[H] = Keq[HA]/[A]	-log[H] = -logKeq - log [HA]/[A]
pH = -logKeq + log[A]/[HA]	pH = pKeq + log[A]/[HA]
(assume for acid, Keq = Ka)	pH = pKa + log[A]/[HA]

MOLECULAR CELL PHYSIOLOGY - General, Inorganic, & Organic Chemistry (continued)

V. Thermodynamics

- A. First Law: conservation of energy energy cannot be created or destroyed (heat is work and work is heat)
- **B.** Second Law: Tendency towards entropy energy tends to follow a path toward disorder (heat cannot on itself pass from a cooler body to a hotter body)
- C. Gibbs Free Energy (G)
 - 1. Free energy change ?G = ?G(prod) ?G(react)
 - a) If ?G is negative, the reaction will occur spontaneously
 - b) If ?G is positive, the reverse reaction will tend to occur
 - c) If ?G is zero, the reaction is at equilibrium
- D. The change in Gibbs Free Energy can also be calculated as ?G = ?H T?S where
 - 1. Enthalpy (H) is the bond energy of the system
 - 2. Temperature (T) is in degrees Kelvin
 - 3. Entropy (S) is a measure of randomness

?G	?Н	T?S
(-)	?H < 0 (exothermic)	T(?S > 0)
?	?H > 0 (endothermic)	T(?S > 0)
? (many biological systems)	?H < 0 (exothermic)	T(?S < 0)
(+)	?H > 0 (endothermic)	T(?S < 0)

Note that $?G = ?G^{\circ} + RTlnQ$ where $?G^{\circ}$ is the value of the change in free energy under conditions of 298 K, 1 atm pressure, pH of 7, and initial concentrations of 1 M for all reactants and products; R is the gas constant of 1.987 cal/(degree)(mol); T is the temperature in Kelvin; and Q is the initial ratio of products to reactants. $?G^{\circ}$ can also be calculated as $?G^{\circ} = -2.3RT \log Keq$

ATP 🗷 ADP + Pi	?G = -7.3 kcal/mol
ADP \land AMP + Pi	?G = -7.3 kcal/mol

ATP energy is used to produce heat, electrolytic potential, transportation, cell movement, synthesis of phospholipids, DNA and RNA synthesis, etc.