PLANT ANATOMY Lecture 24 - Variations in Leaf Development & Structure (LVPs and Gymnosperms); & Leaf Abscission

- L Brief review of angiosperm leaf development
 - A. Leaf growth arises from division throughout the young primordium
 - B. Marginal and submarginal initials give rise to growth of the leaf
 - C. Emphasis is on intercalary growth (intercalary meristem located within the leaf)
 - D. Generalized leaf development
 - 1. Divisions in tunica and outer part of corpus provide initial cell divisions
 - a) Peripheral zone very important in making leaves
 - b) Marginal initials and submarginal initials give rise to leaf primordium
 - c) Organizing zones develop
 - 2. Cells in abaxial area end up getting stretched
 - 3. Cells in lower palisade become spongy
 - 4. Cells in adaxial area continue dividing
 - E. Dicot vs. monocot vein development
 - 1. Dicot: midrib (acropetal), main laterals (basipetal), then minor
 - 2. Monocot: major (acropetal), additional (basipetal), then commissural
- II. Fern leaf development and structure

1.

C.

B.

- A. Begins as a fiddlehead structure
 - Comes from differentiation of the apical cell
 - a) Some fern leaves have indeterminant growth and thereby resemble stems
 - 2. Marginal meristem gives rise to marginal initials and submarginal initials
- B. New tissue is added to the periphery of the leaf
 - 1. New tissue "keeps marching onward"
 - 2. Tendency is toward open dichotomy
 - Characteristics that make ferns unique from angiosperms
 - 1. Open dichotomous
 - 2. Presence of sori (which have spore-bearing structures sporangia)
 - 3. Endodermis on vascular bundle
 - 4. Axillary buds NOT fixed buds that form branches can occur anywhere
 - 5. Leaf growth is by apical cell and THEN marginal meristem
 - 6. Can have chloroplasts in epidermal cells
- III. Gymnosperm leaf development and structure
 - A. Leaf is all "scrunched" together
 - 1. Generalized structure
 - Characteristics that make gymnosperms unique from angiosperms
 - 1. Open dichotomous or single midvein
 - 2. Endodermis (maybe present) that prevents water loss especially in the winter
 - 3. Transfusion tissue acts as "extra" vascular tissue (may be an evolutionary carry-over)
 - 4. Rosette cells modified mesophyll that can expand and collapse (especially helpful in the
 - winter)
- **IV.** Leaf abscission the last event in leaf development
 - A. Signals turn on leaf abscission mechanism abscisic acid
 - B. Tyloses develop to plug xylem vessels
 - C. Cells in abscission zone die
 - D. Sclerenchyma develop adjacent to abscission zone
 - E. Leaf is left hanging by mesophyll cells
 - F. Callose is deposited after organ "drop" and then a periderm forms to replace epidermis
 - G. Some believe abscission zones are not necessary (some oaks lack the zone)