PLANT ANATOMY Lecture 13 - Phloem

- I. Location and function of phloem
 - A. Found in vascular bundles and tissues in all plant parts
 - B. Gross wood anatomy (note: phloem is the Greek word for "bark")
 - 1. Axial system (longitudinal system)
 - a) Sieve elements food transport
 - 1) Sieve cells and sieve-tube members (with companion cells)
 - Sclerenchyma cells support and some storage
 - 1) Fibers and sclereids
 - c) Parenchyma cells storage
 - Ray system (cross or horizontal system) there really isn't a phloem ray system
 a) Parenchyma cells storage & radial transport
 - C. Main functions

2.

b)

- **1.** Sugar (food) transport
- 2. Support (to a lesser extent than xylem)
- D. Terms associated with phloem: "SAPS"
 - 1. Sugar sieve cells, sieve tube members, companion cells, active, down, symplast (living)
- II. Primary and secondary phloem

III.

- A. Primary: protophloem & metaphloem
- B. Secondary: secondary
- Types of Phloem (all are called "sieve elements")
- A. Sieve cells (analogous to tracheids)
 - 1. Found mostly in gymnosperms and lower vascular plants very few angiosperms
 - 2. Function to provide primitive sugar transport
 - 3. Long and moderately narrow with rounded ends
 - 4. Holes in end walls referred to as sieve areas
 - 5. Associated cells called albuminous cells
- B. Sieve tube members (analogous to vessel elements)
 - 1. Found only in angiosperms
 - 2. Efficient in the transport of sugar
 - 3. Relatively wide with flat end walls
 - 4. Holes in side walls called sieve areas
 - 5. Holes in the end wall form a sieve plate
 - 6. Associated cells called companion cells
- IV. Additional information and development of phloem
 - A. Sieve tube members are alive at maturity but have no nucleus
 - 1. Companion cells help out sieve tube members; albuminous cells help out sieve cells (companion cells are really BIG in minor leaf veins)
 - 2. Nucleus for STM is in companion cell
 - 3. Connection between STM and companion cell is sieve area
 - 4. Minor veins of leaves companion cells are transfer cells (herbaceous dicots)
 - a) Ingrowth of cell wall increases surface area of membrane
 - b) Enables more sugar to be pushed into STM
 - c) Ingrowths enable more active energy transport
 - B. Structural features of STMs
 - 1. Callose forms around pores of sieve plate for protection
 - 2. P-protein exists in STMs and tends to pile up against the sieve plate when damage occurs forms toward the point of damage
 - C. Sieve tube members in comparison to xylem
 - 1. Sieve tube members are under positive pressure (xylem is under negative pressure)
 - 2. STMs are constantly ballooning out STMs tend to explode
 - 3. Analogous to vessel is the sieve tube but all sieve tubes have openings
 - D. Development of STM & companion cell
 - 1. Begin as one cell that divides
 - 2. May be more than one companion cell per STM
 - **3.** Trend encountered in STM: from sieve cell to STM (shorter & fatter)