PLANT PHYSIOLOGY Lecture 9 - Structure & Function of Enzymes

- **I.** Definition of metabolism
 - A. The sum of biochemical processes in living cells involved in the synthesis, breakdown, and interconversion of constituents in the cell
- II. Where does energy come from? Laws of thermodynamics
 - A. First law of thermodynamics conservation
 - B. Second law of thermodynamics disorder
 - C. How does the world of life continue to flow?
 - 1. Energy is constantly supplied by energy lost from some place else
- III. Reactions & metabolic pathways
 - A. Metabolic pathways
 - 1. Orderly sequence of reactions
 - A) Reactants (precursors, substrates)
 - **B**) Metabolites (intermediate compounds in pathway)
 - C) Enzymes (catalysts)
 - D) Cofactors (coenzymes NADH, Mg, etc)
 - E) Energy carriers (ATP)
 - F) End products (final outcome)
- **IV.** Enzymes catalyze metabolic events
 - A. Characteristics
 - 1. High turnover number (make lots of product per unit enzyme)
 - 2. Almost all enzymes are proteins (exception is RNA ribozymes)
 - 3. Catalysis occurs at the active site
 - 4. Enzymes do not change equilibrium: E + S ===> E + P
 - 5. Enzymes exhibit specificity
 - B. Mechanism of catalysis lower activation energy

$$\begin{array}{ccc} \mathbf{K}_{s} & \mathbf{K}_{3} \\ \mathbf{E} + \mathbf{S} <===> \mathbf{ES} ===> \mathbf{E} + \mathbf{P} & \text{velocity} = \mathbf{k}_{3} [\mathbf{ES}] \\ \mathbf{E}_{T} = [\mathbf{E}] + [\mathbf{ES}] & \mathbf{K}_{s} = [\mathbf{ES}] & [\mathbf{ES}] & [\mathbf{S}] \end{array}$$

Thus,
$$\underline{\mathbf{E}}_{T} - [\underline{\mathbf{ES}}] = \underline{\mathbf{K}}_{s}$$

[ES] [S]
 $\mathbf{E}_{T}/[\mathbf{ES}] - 1 = \mathbf{K}_{s}/[\mathbf{S}]$ let [ES] = velocity/k₃

so that k_3E_T /velocity = 1 + K/[S] and velocity = $k_3E_T/1+K_s/[S]$ and if velocity_{max} = k_3E_T when [S] is high, velocity = $V_{max}/1 + K_s/[S]$ which is the Michaelis-Menten Equation

C. Structure - complex

D.

- 1. Active site
- 2. Enzyme-substrate complex
- 3. Induced fit model
- Interactions regulations
 - 1. pH and temperature
 - 2. Allosteric enzymes (with a regulatory site)
 - 3. Feedback inhibition
 - 4. Cofactors FAD, NAD, NADP
 - a) Simultaneous reaction(s) coupled to key reaction
 - 1) Acetaldehyde = ethanol; NADH = NAD (Reaction driven)

Acetaldehyde + NADH + 2H^{*} + 2 electrons =====> ethanol + NAD HCOCH₃ ====> H₂C(OH)CH₃ (This is a reduction of acetaldehyde)