PLANT PHYSIOLOGY Lecture 8 - Photosynthesis: Dark Reactions

- IV. (Continued from last time) Dark reactions
 - A. Major purpose use energy from light reactions to fix CO₂ into organic molecules
 - B. Reagents of dark reactions
 - 1. ATP and NADPH
 - 2. CO,
 - 3. Ribulose bisphosphate
 - 4. Enzymes (especially RUBISCO Ribulose bisphosphate carboxylase / oxygenase)
 - C. Why fix CO_2 ?
 - 1. Store and use chemical energy in the form of organic compounds
 - D. Steps of CO₂ fixation:
 - 1. CO₂ and H₂O (1 carbon) are added to ribulose bisphosphate (5 carbons) to form two molecules of 3-phosphoglyceric acid (3-PGA) (total of 6 carbons)
 - 2. Catalysis of this reaction by RUBISCO
 - 3. 3-PGA is reduced to 3-PGAL with the help of NADPH and ATP
 - 4. 3-PGAL is converted to either fructose diphosphate or, eventually ribulose bisphosphate
 - 5. Fructose diphosphate goes to other aspects of metabolism and ribulose bisphosphate goes back to the original cycle of CO₂ fixation.

E. Overall reaction of photosynthesis

$$12H_2O + 6CO_2 = = = light = = > 6O_2 + C_6H_{12}O_6 + 6H_2O$$

- F. Other types of CO₂ fixation under hot conditions (to prevent O₂ competition)
 - 1. C4 plants fix CO₂ by combining it with PEP to form OAA (PEP carboxylase)
 - 2. OAA (Malate after reduction) from mesophyll releases CO₂ to bundle sheath where RUBISCO carries on its usual process)
 - 3. Recyclization occurs when Malate is converted to pyruvate and, subsequently PEP for another round of CO₂ fixation.
- G. Now what happens?
 - 1. We have carbohydrate a principle form of organic energy
 - a) Respiration will harvest energy and convert it to the universal currency ATP