PLANT PHYSIOLOGY Lecture 17 - Thermodynamics and Water Potential

- I. Ability to perform work
 - A. Gibbs Free Energy $\triangle G$
 - **B.** Want: $\triangle G$ to be negative
- II. System and surroundings
 - A. System: part of particular interest
 - **B.** Surroundings: stuff around the system (environment)
- III. Laws of thermodynamics
 - A. First Law: conservation of energy
 - 1. $\triangle E = Q W$, where E = energy, Q = heat absorbed by system, and W = work done by system
 - B. Second Law: entropy
 - 1. $\Delta S_{\text{system}} + \Delta S_{\text{surroundings}} > 0$ for spontaneous process
 - C. Combine Laws

1.

1.

- 1. $\Delta G = \Delta H T\Delta S$, where G = free energy, H = change in enthalpy (work done by the system, or P ΔV), T is temperature, and S is entropy (disorder)
- 2. $\Delta G = -RTlnK_{eq}$, where G = free energy, R is a constant, and K_{eq} is the equilibrium constant
- D. What does it all mean?
 - Conservation and disorder
- IV. Water movement and thermodynamics
 - A. How does water move? From high potential to low potential
 - Water moves from
 - high activity to low activity high temperature to low temperature high pressure to low pressure high chemical potential to low chemical potential high Ψ to low Ψ
 - **B.** Measurement of water potential (Ψ)
 - 1. $\Psi = \Psi_p + \Psi_s + \Psi_g + \Psi_m$ (water potential = pressure + osmotic + gravitational + matrix potential)
 - a) Pressure force caused by pressure
 - b) Osmotic influenced by solute concentration
 - c) Gravitational due to gravity
 - d) Matrix forces of absorption and capillarity
 - C. Calculation of water potential
 - 1. What's important? pressure and osmotic
 - 2. Calculating osmotic water potential

 Ψ_s = -miRT, where m = molality, i = ionization constant, R is a constant, and T is temperature