PLANT PHYSIOLOGY Lecture 18 - Water Potential and Xylem Transport

- I. Measuring water potential
 - A. Water potential (Ψ)
 - 1. $\Psi = \Psi_p + \Psi_s$ (water potential = pressure + osmotic potentials)
 - 2. When water moves it causes a $\Delta \Psi$ (note ΔG)
 - a) Water moves from high to low (low $\triangle G$ high $\triangle G$ = negative $\triangle G$)
 - 3. Why is water potential important?
 - a) It is the chemical potential of water in a system
 - b) It is the indirect determinant of water movement
 - 4. How is water potential measured?
 - a) Thermocouple psychrometry based on relative humidity of equilibrated sample
 - b) Pressure bomb leaf placed in a chamber with pressure (assume osmotic potential is negligible)
 - c) Chardakov's Method (assume $\Psi_p[\text{solute for assay}] = 0$; so, $\Psi = \Psi_s)$
 - 1) Line up tubes of known solute concentration and add some dye
 - 2) Immerse tissue in duplicate samples of solute and allow to equilibrate
 - 3) Remove tissue and the add one drop of colored solution to each corresponding tube
 - a)) If drop rises, water potential of tissue is lower
 - b)) If drop sinks, water potential of tissue is higher
 - 4) Then calculate Ψ assuming Ψ = Ψ_s
 Ψ_s = -miRT, where m = molality, i = ionization constant, R is a constant, and T is temperature
 - 5. What are units of water potential?
 - a) Bars (1 bar = 0.98 atmospheres or 0.10 MPa)
 - B. Other potentials destroy pressure potential by freezing (rupturing) cells
- **II.** How does water move (remember apoplast, xylem, tracheids, vessels, water, dead)?
 - A. Mechanism of xylem transport (cohesion-adhesion-tension hypothesis)
 - 1. Tracheids and vessels usually dead, empty cells
 - 2. Transport by bulk flow driven by transpiration
 - a) Transpiration causes "suction" and negative pressure on water in xylem
 - 3. Important characteristics of water
 - a) Cohesion attraction of water molecules to each other
 - b) Adhesion attraction of water to other molecules (like cell walls)
 - c) Tension ability of water to withstand negative pressure
 - B. Example of flow from soil to air (from Oosterhuis, Univ. Arkansas)

Units are in bars

Soil: $\Psi_p = 0$, $\Psi_s = -1$, $\Psi = -1$ Root surface: $\Psi_p = 12$, $\Psi_s = -14$, $\Psi = -2$ Inside root: $\Psi_p = -2$, $\Psi_s = -1$, $\Psi = -3$ Xylem: $\Psi_p = -3$, $\Psi_s = -1$, $\Psi = -4$ Leaf: $\Psi_p = 15$, $\Psi_s = -20$, $\Psi = -5$ Stem meristem: $\Psi_p = 17$, $\Psi_s = -22$, $\Psi = -5$ Air: $\Psi = -270$