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Abstract: The Redlich-Kwong-Soave equation of state for real gases and liquids has been 

allowing the b-parameter to be a function of the temperature and molar volume of real gases and 
liquids.  Molecular dynamics simulations of the noble gas krypton, using the hard-sphere potential 
for a large number of krypton atoms, were performed to evaluate how the b-parameter varies with 
gas molar volume.  The results of these simulations were applied when modifying the original 

the a
is employed as well as the measured critical temperature and critical pressure values in parameter 
determination at the critical point.  From this determination of parameters for a number of real gases, 
the same parameters can be approximately calculated using the measured critical compressibility 
factor avoiding numerical procedures.  This results in an equation of state that matches closely with 
the measured critical point for many gases as well as improving the match between the model and 
measured liquid molar volumes.

Introduction

real gases at relatively high temperatures and 
low pressures is the ideal gas equation:

PV   =   nRT (1)

P is the pressure of the gas, V is the volume of 
the gas, n is the number of moles of the gas, T is 
the temperature of a gas in absolute temperature 
scale, and R is the ideal gas constant.  If one 
divides through the ideal gas equation with the 
number of moles of gas, one has the general 
expression below in terms of gas molar volume 
v.

Pv   =   RT                (2)

The gas molar volume v is the unit volume 
occupied by one mole of a gas and is equal to 
the gas volume V divided by the number n of 

moles of gas.

v   =   V/n                (3)

However, at low temperatures and high 
pressures, real gases deviate from the ideal gas 

low temperatures and high pressures, any real 
gas will condense into the liquid phase and an 
equilibrium situation takes place between the 
liquid and gas phases of any pure substance.  

was accomplished by van der Waals using the 
following mathematical relation.

P   =   nRT/(V – nb
vdW

)   –   a
vdW

 n2/V 2 (4)

In the van der Waals expression, Equation 
4, b

vdW
 is the molar volume of space occupied 

by individual gas atoms, in the case of a noble 
gas, or gas molecules which is much less than 
the volume of the gas itself at relatively low 
pressures.  It is this space occupied by gaseous 
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particles which prevent any real gas volume 
going to zero at extremely large pressures.  The 
a

vdW
 term represents the weak attractive forces 

amongst gaseous atoms or molecules which is 
responsible for the liquid phase at temperatures 
below the critical temperature value T

c
 of any 

pure gas.  Above the critical temperature value, 
it is impossible to liquefy any gas, because only 
below the critical temperature both the liquid 
and vapor phases coexist.  In theory, above 
the critical temperature, the average kinetic 

overcome the weak attractive forces that occur 
when two gas atoms or molecules come into 
close contact (Barrow, 1979).  Above the critical 
temperature value, it is impossible to liquefy 
any gas due to the average kinetic energy of gas 
atoms or molecules successfully overcoming the 
weak attractive forces that occur when two gas 
atoms or molecules come into close contact.  If 
one substitutes Equation 3 into Equation 4, then 
the van der Waals equation of state can be more 
conveniently represented as a function of gas 
molar volume v instead.

P   =   RT/(v – b
vdW

)  –   a
vdW

/v2  (5)

Unlike the ideal gas equation, one must 
experimentally determine the numerical values 
of parameters a

vdW
 and b

vdW
 in the van der 

Waals expression.  The exact values of these 
two parameters depend upon the chemical 
composition of any pure gas.  To determine 

gas.  The critical point takes place when a 
real gas is at its critical temperature value T

c
 

and its pressure value P is equal to its critical 
pressure value P

c
.  The critical pressure value P

c
 

is that value the equilibrium vapor pressure of 
a pure liquid approaches to in the limit of the 
critical temperature, and likewise in the limit 
of the temperature approaching the critical 
temperature value at the critical pressure 
value, the liquid molar volume v of the liquid 
approaches its critical molar volume v

c
.  Or, at 

the critical temperature and pressure, the molar 
volume of the liquid is equal to that of its gas 
molar volume instead of being less than the gas 
molar volume.   At the critical point of any pure 

der Waals expression, Equation 5, with respect 
to the molar volume v are both equal to zero.

P v) = 0    (At T = T
c
, P = P

c
 and v = v

c
) (6)

2P v2) = 0  (At T = T
c
, P = P

c
 and v = v

c
) (7)

By using Equations 6 and 7 along with the 
following expression one can determine the 
numerical values of a

vdW
 and b

vdW
:

P
c
  =  RT

c
/(v

c
 – b

vdW
)  –   a

vdW
/v

c
2  (8)

the early part of the 20th century, it was practically 
impossible to measure the critical molar volume 
v

c
 of a liquid with the technology available at 

that time.  When solving for parameters a
vdW

 and 
b

vdW
, they were determined to be the following 

two functions of the measured critical pressure 
and critical temperature values.

a
vdW

  =  (27/64) R2 T
c
2 / P

c
                 (9)

b
vdW

  =  RT
c
/(8P

c
)               (10)

And the estimated critical molar volume v
c
 is 

three times the numerical value of the van der 
Waals b-parameter.

v
c
  =  3b

vdW
                (11)

is that it overly estimates the values of most 
measured critical molar volumes determined 
with today’s technology.  Also, it over-estimates 
the pressures of most real gases as compared 
to high pressure data measured at temperatures 
above the critical temperature value where 
condensation is unable to take place.  To 
improve this model, Redlich and Kwong later 
on developed the following expression.

P  =  RT/(v – b)   –   a /{T1/2  [v(v + b)]}     (12)

Division by the square root of the absolute 
temperature T compensates for the increase 
of overcoming weak intermolecular forces of 
attraction with an increase of temperature.  With 
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the inclusion of the b parameter in the Redlich-
Kwong equation of state for real gases and 
liquids, Equation 12, in the subtraction term, 
Equation 12 can be rearranged to similar format 
of the original van der Waals equation into the 
following equation.

P = RT/(v – b)  –  {a/[T1/2(1 + b/v) ]}  /  v2    (13)

Thus, by the Redlich-Kwong equation of 
state, the van der Waals a

vdW
 parameter is the 

following function of temperature and molar 
volume.

a
vdW

  =  a/[T1/2(1 + b/v) ]                            (14)

Thus, in view of Equation 13, the decrease 
in molar volume allows the van der Waals a

vdW
 

parameter approach zero in the limit of zero 

volumes, atoms and molecules then would begin 
to overlap their electron clouds.  This equation 
will then model decreasing attractive forces of 
gaseous atoms and molecules in the limit of zero 
molar volume along with the positive term in the 
original van der Waals equation of state.  Again 

6 and 7, the a and b parameters and the critical 
molar volume are approximately equal to the 
following expressions given below to a limited 

a  =  0.42748 R2 T
c
2/P

c
               (15)

b  =  0.08664 R T
c
 /P

c
               (16)

v
c
  =  0.38473 b                             (17)

Redlich-Kwong equation, numerical techniques 
must be utilized in a computer program in order 
to evaluate the fractions given in Equations 15 
to 17.  The Redlich-Kwong expression yielded 
a much improved model when comparing 
the measured high pressure data of a real gas 
at temperatures above the measured critical 
temperature value.  Yet, still the calculated 
critical molar volume v

c
 by the Redlich-Kwong 

equation of state given in Equation 17 over 
predicts the measured values, but closer than that 

by the van der Waals equation.  Another problem 
with the Redlich-Kwong function is that with 
the a parameter divided by the square-root of the 
absolute temperature scale over estimates the 
weak attractive forces amongst gas atoms below 
the critical temperature value, especially as the 
temperature drops below the freezing point of 
any substance.

To avoid this problem for low temperatures 
concerning the Redlich-Kwong equation, Soave 

following expression referred to as the Redlich-
Kwong-Soave equation of state (Prausnitz et al., 
1998).

P = R T / (v – b)  –  a(T, ) /  [v (v  + b)]     (18)

For this expression, a(T, ) is the next function 
of the absolute temperature T, the measured 
critical pressure value P

c
, the measured critical 

temperature value T
c
, and the measured acentric 

factor  of a real gas or liquid:

a(T, ) = [0.42748 R 2 T
c
2 / P

c
]{1 + [0.480 +

 1.574   –  0.176 2][1 –  (T/T
c
)1/2]}2          (19)

However, the b parameter and the critical 
molar volume v

c
 in the Redlich-Kwong-Soave 

16 and 17.  Thus, the calculated critical 
molar volumes are larger than that observed 

1998), the measured acentric factor  is equal 
to the following equation involving the observed 
equilibrium liquid-vapor pressure value P

equil
, at 

an absolute temperature value equal to 70% of 
the measured critical temperature value T

c
 of 

any pure substance, and the measured critical 
pressure value P

c
:

   =   –log
10

(P
equil

/P
c
)   –   1 

(At T = 0.7 T
c
)                                          (20)

For noble gases, the acentric factors are nearly 
equal to zero, but for other gases and liquids 
acentric factors are measured to be greater than 
zero.  The measured acentric factor is useful 
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in observing non-ideal properties of gases and 
liquids in general, such that larger the value of 
the acentric factor less ideal gas behavior of real 
gases and liquids.  When utilizing the Redlich-
Kwong-Soave equation of state, Equation 18, 
the model still matches well with observed 
high pressure data, and the a value will not 

goes to absolute zero.  However, the value of 
a

disagreement between the previously discussed 
models is that they all also over predict the 
measured liquid molar volumes of liquids 
studied because the b parameter is held constant.  
This is a common error in all the three previous 
models of real gases and liquids discussed thus 

into account how the b parameter is a function 
of both the gas molar volume and absolute 
temperature.

Equation of State for Real Gases and Liquids

In theory, the b-parameter includes the space 
occupied by gas atoms or molecules, and the 
space they cannot occupy due to hindrance 
during collisions in space. The numerical 
value of the b parameter should decrease 
with increasing molar density and approach a 
constant value greater than zero in the limit of 

are hard-spheres.  However, atoms that make up 
matter are not hard spheres but atoms behave 
instead like spheres with a soft outer periphery 
and a nearly incompressible inner spherical core.  
Thus, for real gases, the b parameter is a function 
of the absolute temperature as well as the gas 
molar density.  The next function presented in 

Soave equation which matches measured liquid 
molar volumes below the critical temperature 
as well as high pressure data above critical 
temperature value:  

P   =   RT / {v   –   b
0
   –   b

1
(T ) exp[–k(T )/v]}

    –    a / [v (v   +   b
0
)]                              (21)

or molecular molar volume b of the original 
Redlich-Kwong-Soave equation has been 
replaced by the following negative exponential 
function of temperature and molar volume v:

b(T )   =   b
0
   +   b

1
(T ) exp[–k(T )/v]          (22)

In Equation 22, b
1
(T ) and k(T ) are evaluated 

functions of temperature derived from analyzing 
listed liquid-vapor equilibrium data below critical 
temperatures and high pressure data above the 
critical temperature values for a number of pure 
substances (Green and Southhard, 2018).  The 
substitution of the constant b-parameter with 
a function of temperature and molar volume, 
Equation 22, is originally based upon the study 
of computer simulations for the noble gas 
krypton using the hard-sphere potential (See 

Regards to the b
version of the Redlich-Kwong-Soave equation 
(Equation 21), the a-parameter is assumed to 
be constant and also the b

0
-parameter.  To best 

match up with measured liquid molar volume 
values, the b

0
-parameter is set equal to 0.2632 

times the measured critical molar volume v
c
 of 

any real gas or liquid:

b
0
   =   0.2632 v

c
                (23)

Furthermore, at the critical temperature value 
T

c
 the parameters b

1
(T

c
) and k(T

c
) were observed 

approximately to be the following functions 
of the critical compressibility factor Z

c
 and 

measured critical molar volume v
c
:

b
1
(T

c
)      v

c
 [–2030.1Z

c
4   +   1983.8Z

c
3   –   

738.11Z
c
2   +   121.16Z

c  
 –   6.2489]           (24)

k(T
c
)      v

c
 [–22.92 Z

c
4   +   19.098Z

c
3   –   

6.1684Z
c
2   +   0.7599Z

c
   +   1.0437]          (25)



131

Proc. Okla. Acad. Sci. 98: pp 127 - 138 (2018)

evaluated b
0
-, b

1
(T

c
)-, k(T

c
)-, and a-parameters 

from measured critical point data of real gases 
and liquids using expressions given in Equations 
46 to 47 as well as Equation 23.  The data 
utilized are listed in Perry’s Chemical Engineer’s 
Handbook, 6th Edition.  Referring to Equations 
24 and 25, the critical compressibility factor Z

c

is the following function of the measured critical 
pressure P

c
, the measured critical temperature 

T
c
, and the measured critical molar volume v

c
 at 

the critical point including the ideal gas constant 
R:

Z
c
   =   P

c
v

c
 /(RT

c
)              (26)

Concerning the a-parameter, from the 
analyses performed it is observed to be nearly 
modeled by the following function of the 
measured critical pressure and measured critical 
temperature including the experimental critical 
compressibility factor and ideal gas constant R
(Figure 1):

a    [(R T
c
)2/P

c
][–881.16Z

c
4   +   848.14Z

c
3

 –   318.38Z
c
2   +   55.96Z

c
   –   3.1858]      (27)

At and above the measured critical 
temperature value, the evaluated high pressure 
data of the noble gases neon, argon, krypton, and 
xenon reveal that b

1
(T ) and k(T ) approximately 

follow the two next functions of temperature 

(Figure 2):

b
1
(T ) b

1
(T

c
){0.1691 + 

0.8247exp[–0.6928(T/T
c
)] + 

0.4611exp[–0.09207 (T/T
c
)]}/1.002135      (28)

k(T ) k(T
c
){0.4871 + 

0.2138exp[–0.5003(T/T
c
)] + 

0.4138exp[–0.05789(T/T
c
)]}/1.007263       (29)

For temperatures below the critical 
temperature value (T < T

c
) in the liquid-vapor 

region, the b
1
(T ) and k(T) functions were 

observed to approximately match up with the 
following cubic and quadratic functions of 
temperature, respectively, for non-polar and 
polar substances both (Figure 3):

b
1
(T )   b

1
(T

c
) [

0
  +  

1
 (T/T

c
)  +  

2
 (T/T

c
)2  +  

3
 (T/T

c
)3]/ 

[ 
0
 + 

1
 + 

2
 + 

3
]              (30)

k(T )   k(T
c
) [

0
    +    

1
 (T/T

c
)   +  

2
 (T/T

c
)2] / [ 

0
 + 

1
 + 

2
]               (31)

 

Figure 1 . Evaluated a/[(R Tc)
2/Pc]  ratios for a number of non-polar and polar molecular 

compounds at the measured critical point using Perry’s Chemical Engineers’ Handbook 
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The 
0
-, 

1
-, 

2
-, and 

3
-parameters in the 

cubic expression of Equation 30 for non-polar 
compounds were observed to approximately 
equal the following linear functions of the 
acentric factor  (Figure 4):

0
   –11.393    +   1.4017              (32)

1
   32.772    –   0.0942              (33)

2
   –32.655    –   0.5220              (34)

3
   11.282    +   0.2158              (35)

 

Figure 2. Evaluation of the b1(T )/b1(Tc)  ratios from the measured high-pressure data of the 
noble gases neon, argon, krypton, and xenon at temperatures above the critical temperature 

of the data points.

 

Figure 3 . Evaluated b1(T )/b1(Tc) ratios from measured liquid-vapor equilibrium data of noble 
gases neon, argon, krypton, xenon; hydrocarbons methane, ethane, propane, and butane; 
and water using Perry’s Chemical Engineers’ Handbook (Green and Southard, 2018).  The 

) represent data for argon; triangles ( ) 

data for methane; asterisks (*) represent data for ethane; long dashes (–) represent data for 
propane; pluses (+) represent data for butane; and short dashes (-) represent data for water.
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And for polar substances, the following 
approximate linear expressions of the acentric 
factor apply instead:

0
   –7.062    +   1.7997              (36)

1
   22.000    –   2.2642              (37)

2
   –24.101    +   2.7785              (38)

3
   9.199    –   1.3223              (39)

Because non-polar and polar substances 

numerical constants result in linear functions 
of the acentric factor.  The 

0
-, 

1
-, and 

2
-

parameters in the quadratic expression of 
Equation 31 for non-polar compounds are 
similarly approximately equal to the following 
linear functions of the acentric factor  (Figure 
5):

0
   –2.089    +   1.1043              (40)

1
    4.346    –   0.0688              (41)

2
   –2.276    –   0.0355              (42)

And for polar substances, the following 
approximate similar linear expressions apply.

0
   –1.355    +   1.1620              (43)

1
    2.685    –   0.1886              (44)

2
   –1.337    +   0.0268              (45)

Due to the slight curvature of the k(T ) 
parameter, a quadratic expression was utilized 
instead of a cubic function.  For non-polar 
substances, data from all noble gases except 
helium were analyzed, and the hydrocarbons 
whose measured data were studied are linear 
saturated hydrocarbons methane to butane and 
heptane to decane, and also ethylene, propylene, 
isobutene, benzene and toluene.  Concerning 
polar substances, data from ammonia, carbon 
monoxide, chloromethane, and water were 
studied.

Concerning the critical point at P
c
, T

c
, and 

v
c
, the numerical value of the b

0
-parameter 

was calculated using Equation 23, and then the 
numerical values of the a-parameter and the 
temperature dependent parameters b

1
(T

c
) and 

k(T
c
) were initially evaluated using the following 

three expressions:

P
c
   =   R T

c
 / {v

c
  –  b

0
  –  b

1
(T

c
) exp[ –k(T

c
)/v

c
]}   

–   a / [v
c
 (v

c
 + b

0
)]              (46)

P
c

v
c
)T   =   0    (at T = T

c
)              (47)

2P
c

v
c
2)T   =   0   (at T = T

c
)                     (48)

 

0 values for a number of 
non-polar compounds using Perry’s Chemical 
Engineers’ Handbook (Green and Southard, 

data, and the non-polar compounds analyzed 
were the hydrocarbons stated in the text, and 
all the noble gases except helium.

 

0 values for non-polar 
noble gases and hydrocarbons using Perry’s 
Chemical Engineers’ Handbook (Green and 
Southard, 2018).  The dotted line is the linear 

analyzed were the hydrocarbons stated in the 
text, and all the noble gases except helium.
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 In addition, for any particular real gas 
concerning the evaluated values of b

0
-, b

1
(T

c
)-, 

and k(T
c
)-parameters, there is the hypothetical 

minimum molar volume v
min

 at the limit of 

v
min

   –   { b
0
  +  b

1
(T

c
) exp[ –k(T

c
)/v

min
]}   

=   0 (at T = T
c
)                          (49)

For the expressions given in Equations 46 
to 48, there is the complication that with three 
equations of state there are four parameters to 
be evaluated:  a, b

0
, b

1
(T

c
), and k(T

c
).  The fourth 

mathematical condition used was the expression 
in Equation 23 to calculate the constant b

0
-

parameter as a linear function of the measured 
critical liquid molar volumes.  A number of 
gases in the liquid phase were evaluated by 
variation of the b

0
-parameter to obtain the best 

calculated liquid molar volumes in comparison 
to experimental values.  The constant value 
which yielded the best overall averages is the 
value of 0.2632 in Equation 23 for the constant 
b

0
-parameter as a linear function of the measured 

critical molar volume v
c
.

Of course, a computer program is necessary to 
evaluate the parameters a, b

1
(T

c
), k(T

c
), and v

min

at the critical point due to the complexity of the 
non-linear functions in Equations 46 to 48.  Yet, 
from the evaluation of a number of real gases and 

from numerical analyses of data in Equations 
46 to 48 resulted in the expressions given in 
Equations 24, 25, and 27.  Table 1 displays how 

equation of state matches measured critical 
point data when utilizing Equations 24, 25, 
and 27 for the measured critical point data to 
evaluate the a-parameter and parameters b

1
(T

c
) 

and k(T
c
).  Concerning the minimum volume 

v
min

molar volume varies slightly with temperature 

Soave equation of state for temperatures below 
and above the critical temperature value.  In 
theory, the value of v

min
 hypothetically should be 

constant or nearly constant.

Concerning the liquid phase, Figure 6 

Soave expression matches up with measured 
liquid molar volume data for the hydrocarbon 

to the original Redlich-Kwong-Soave equation.  
With regards to high pressures above the 
critical temperature, Figure 7 displays the same 
comparison for high pressure data of butane at 
500 Kelvin.  The matches for both versions of 
the Redlich-Kwong-Soave equations of state are 
equally well at high pressures for temperatures 
above the critical temperature value.

 

Figure 6 . Liquid molar volume of butane 
from 150 Kelvin up to the critical temperature 
value of 425.2 Kelvin.  The black circles are 
from experimental measurements, white 
triangles calculated values from the Redlich-
Kwong-Soave equation of state, and the white 
circles from calculated liquid molar volumes 

equation of state.  

 

Figure 7 . High pressure data of butane 
at 500 Kelvin.  The black circles are from 
experimental measurements, white triangles 
from Redlich-Kwong-Soave equation of 

Redlich-Kwong-Soave equation of state.
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In addition to the evaluation of b
1
(T

c
), k(T

c
) 

and a using measured critical point data, the 
other mathematical challenge was how to 
determine the general temperature variations 
of parameters b

1
(T ) and k(T ) below and above 

the critical temperature value in order to derive 
general expressions in Equations 28 to 45.  A 
series of iterations and algorithms in FORTRAN 
were developed to evaluate the b

1
 and k values 

region and high pressure data above the critical 
temperature, for each real gas or liquid studied 
(Press et al., 1992).  In all instances, not only 
was the b

0
-parameter kept constant calculated 

using Equation 23, but also the minimum molar 
volume v

min
 was assumed to be constant when 

calculated by Equation 49 from the value of 
for a, b

1
(T

c
), and k(T

c
) in Equations 46 to 48.  

Determining values of b
1
(T ) and k(T ) for high 

pressure data above critical temperature value 

experimental high pressure data observed 

given temperature, the b
1
(T ) value determined 

was the number which yielded a minimum chi-
square value while keeping v

min
 evaluated at the 

critical temperature constant, and the value of 
k(T ) was evaluated using the next expression 
from rearranging Equation 49.

k(T )   =   –v
min

 loge[ (vmin
 – b

0
) / b

1
(T )]       (50)

However, evaluation for the b(T ) value 
below the critical temperature incorporated the 
following integral set equal to zero.

 P
equil

 is the measured equilibrium liquid-
vapor pressure at a measured temperature value 
below the critical temperature, and P

mRKS
 is the 

Equation 21.  Theoretically, this integral is equal 
to zero between the lower limit, the liquid molar 
volume v

liq
, and the upper limit being the vapor 

molar volume v
gas

, because the molar Gibbs free 
energy value of both liquid and vapor phases are 
equal at equilibrium conditions (Hirschfelder et 
al., 1954).  The algorithm varied the value of 
b

1
(T ), determining the value of k(T ) using the 

expression in Equation 50 by again assuming 

vgas 

 (Pequil        PmRKS) dv   =   0  (51) 
vliq 

Gas Measured Tc Calculated Tc Measured Pc Calculated Pc Measured vc Calculated vc

(Kelvin) (Kelvin) (Atm) (Atm) (Liter/mole) (Liter/mole)

Neon 44.4 44.4 26.18 26.23 0.04177 0.04177

Argon 150.9 151.0 48.34 48.42 0.07458 0.07457

Krypton 209.39 209.54 54.24 54.34 0.09201 0.09199

Xenon 289.7 289.9 57.45 57.50 0.1194 0.1194

Methane 190.6 190.7 45.39 45.47 0.1000 0.09998

Ethane 305.3 305.5 48.07 48.16 0.1471 0.1471

Butane 425.2 425.5 37.46 37.54 0.2560 0.2559

CO2 304.2 304.4 72.86 73.02 0.09440 0.09438

O2 154.77 154.82 50.20 50.23 0.07885 0.07887

N2 126.25 126.34 33.52 33.58 0.09216 0.09215

Water 647.31 647.52 218.31 218.50 0.05711 0.05712

Ammonia 405.4 405.6 111.5 111.7 0.07246 0.07247

CO 132.91 133.01 34.50 34.56 0.09347 0.09346

Table 1. Comparison between measured critical point data along with that calculated using 

measured critical compressibility factors in Equations 24, 25, and 27.
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the hypothetical minimum molar volume v
min

 
is constant, until the integral expression in 
Equation 51 is equal to zero.  Then for any 
particular real gas or liquid, the values of b

1
(T ) 

and k(T
to the b

1
(T

c
) and k(T

c
) values calculated using 

Equations 24 to 25 from measured critical point 
data.  This resulted in the data shown in Figure 
3, and a closer analysis of data below the critical 
temperature values resulted in an observation of 
the linear dependence of the i (i = 0 to 3) and 

i (i = 0 to 2) values upon the acentric factor  

Concerning high pressure data for butane, the 

Kwong-Soave equation was accomplished 
simply by applying Equations 21 to 25 and 27 
to 29 for each measured gas molar volume and 
likewise Equations 18 and 19 for the original 
version.  However, for the calculated liquid 
molar and vapor molar volumes in both the 
original Redlich-Kwong-Soave equation and the 

was used. 

b-Parameter

In the Redlich-Kwong-Soave equation of 
state, the b-parameter represents the atomic or 
molecular molar volume of a real gas which is 
due to the gas atoms and molecules occupying 
space, or a small fraction of the gas volume at 
low pressure since atoms are not point masses.  
In theory [3], this b-parameter is not constant 
but dependent upon the gas molar density and 
absolute temperature as well.  By assuming this 
parameter b is constant at all gas densities and 
temperature values, the Redlich-Kwong-Soave 
equation does not match up well with measured 
liquid molar volumes at temperatures below 
the critical temperature value.  Therefore, it 
was necessary to determine how this parameter 
varies with gas molar density at least by using 
the hard-sphere model.  This was accomplished 
by developing a FORTRAN computer program 
that models the collision dynamics of a 
monatomic gas contained within a cubic gas 
volume simulating gas atoms as hard spheres.  

A large number of simulations were performed 

densities with a simulation temperature equal 

molar density simulated at 300 Kelvin, the 
number of krypton atoms was also varied.  It 
was necessary to do simulations at constant 
temperature and constant molar density using a 

to obtain correct extrapolations to an extremely 
large number of gas atoms such as Avogadro’s 
number.

value N for a large number of gas atoms, from 
several hundred to over ten-thousand, to be 
encased within a microscopically sized cubic 
volume that has edge lengths on the order from 

(1Ångstrom = 10–10 meter) .  Then, the atoms 
are initially positioned in the face-centered 
cubic unit cell arrangement, with the separation 
distances amongst the atoms established by the 

a Gaussian random number generator (Press et 
al., 1992) is utilized to establish a Maxwellian 
velocity distribution for the assigned gas 
temperature value.  Then the simulation begins 
and continues until a very large number of 
inter atomic collisions take place.  When the 
simulation is completed, the pressures at each 

average simulation pressure value < P > is 
determined by calculating the averages of the 
simulation pressures P

i

walls:

pressure value < P >, the standard deviation 
was calculated to get an estimated uncertainty 
in the atomic molar volume b
out the numerical value of the b-parameter at 
a given molar density and temperature value 
using the hard-sphere model, it is necessary to 

of gas atoms in any simulation is much less 
than Avogadro’s number.  When doing so, the 

                                           6 

< P >   =    Pi / 6  (52) 
                                           i=1 
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the cube is computed as:

  In Equation 53, l is the edge length of the 
microscopic cubic gas volume of the simulation, 
r is the hard-sphere atomic radius, m is the mass 
of the hard-sphere, v

j
 is the velocity component 

of the colliding atom whose direction is 

i
 is the 

total number of collisions at the wall, and t is the 
total simulation time.

For the hard sphere model, the equation of 
state of such a hypothetical gas is the following 
mathematical expression:

P   =   R T / (v   –   b)               (54)

volume b for one mole of hard-spheres is the 
following function of gas pressure P, temperature 
T, and molar volume v:

b   =   v   –   R T / P               (55)

If one divides Equation 55 by Avogadro’s 
number N

A

volume v  for a hard-sphere atom:

v    =   v
atom

   –   (R/N
A
) T / P              (56)

In Equation 56, the term v
atom

 represents the 
gas volume in units of Liters per atom.  Since 

the number of gas atoms in a single simulation is 
much less than Avogadro’s number, Equation 56 
becomes the following expression when using 
the average simulation pressure value < P >:

v    =   (l – 2r)3/N   –   (R/N
A
) T / < P >      (57)

The next challenge was then to determine 
how to extrapolate the simulation results to 
that for Avogadro’s number of hard spheres 

At zero moles per Liter or zero molar density, 

theoretically (Hirshfelder et al., 1954) the ratio 
 and atomic 

volume v
atom

 for hard-spheres is exactly equal to 
four:

v /v
atom

   =   4                (58)

Theoretically this ratio decreases in value 
with increasing molar density until maximum 

pressures, and for the face-centered cubic unit 
cell arrangement, this ratio at maximum molar 
density is about 1.35 at extremely large pressure 
values:

v /v
atom

   =   (3 × 21/2)/       1.35 

For the noble gas krypton using the hard-
sphere model, the atomic volume v

atom
 is 

calculated by setting the atomic diameter equal 
to the sigma-parameter in the Lennard-Jones 
potential evaluated from viscosity data (Bird et 
al., 2006):

v
atom

/2)3 r3            (60)

atomic volume and atomic volume (v /v
atom

) 
increases in value with the ratio (l – 2r)3/l3.  The 
smallest number in one simulation was 172 
atoms, and then additional simulations were 
performed at 365, 666, 1099, 1688, 2457, 3430, 
4631, 6084, and 7813 atoms with molar density 
of 15 moles per Liter at 300 Kelvin.  A plot 
of the ratio v /v

atom
 versus the ratio (l – 2r)3/l3 

there is one mole of hard-spheres, Avogadro’s 
number, the ratio (l – 2r)3/l3 will be nearly equal 
to one.  Hence, extrapolation to one yields the 
simulation ratio of v /v

atom
 for an astronomically 

large number of hard spheres.  Once this value 
is determined, then the b-parameter at the 
simulation molar density can be evaluated for 
the expression in Equation 55.  After a large 
number of simulations were performed and 

atomic volume and atomic volume (v /v
atom

) 
versus molar density (1/v) at 300 Kelvin for 

                         Ni 

Pi   =   (  2 mvj / t ) / (l      2r)2 (53) 
                         j=1 
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krypton using the hard-sphere potential was 
observe to follow a negative exponential 
function.  The simulation data revealed that the 

b in the hard-
sphere model is approximately modeled by the 
following negative exponential cubic function 
of the gas molar density:

b   =   b
0
 + b

1
 exp[ –(k

1
/v  –  k

2
/v2  +  k

3
/v3) ]   (61)

And the numerical values of the constants in 
Equation 61 have to be determined from curve 

the hard-sphere model.  Of course, the values of 
these constants depend upon the size of the hard-
sphere and what type of initial arrangement was 
employed when beginning the simulations.

Because atoms are not hard-spheres but 
behave more like spheres with a soft, penetrable 

spherical core, the negative exponential function 
in Equation 22 was employed to best match 
experimental data of real gases when modifying 
the Redlich-Kwong-Soave equation of state.

Conclusion:  Why not modify the van der 
Waals Equation of State for Real Gases and 
Liquids?

gases and liquids is the van der Waals equation.  
Thus, one may ask the question why not apply 
the same variation of the b-parameter for this 

P   =   RT / {v   –   b
0
  –  

b(T k(T )/v)]}   –    a / v2                 (62)

There is a serious problem when applying 

equation of state for real gases and liquids, 
because for some polar liquids, such as methyl 
alcohol and others, instead of having one critical 
point, there are two instead.  In reality, real gases 
and liquids only have one critical point.

Soave gas equation can be rearranged 

mathematically to the following expression 

P   =   RT / {v   –   b
0
   –   b

1
(T ) exp[–k(T )/v]}

–    [a/(1   +   b
0
/v)] / v2                            (63)

In Equation 63, the numerator in the 
subtraction term represents the fact that the van 
der Waals a
Kwong-Soave equation has dependence upon 
the gas molar volume v such that in the limit of 
zero molar volume, the term in the numerator 
approaches zero for this subtraction term.  In 
theory, this correlates with the fact that at such 
high pressures gaseous atoms or molecules will 
begin to overlap their electron clouds enhancing 
repulsive forces.  Thus, the repulsive forces 
for real gaseous atoms and molecules are not 

only in both the van der Waals and Redlich-
Kwong-Soave equations of state.
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