PLANT PHYSIOLOGY Lecture 19 - Mineral Nutrition

- I. Review of water potential
 - A. Water potential (Ψ) = pressure potential (Ψ_p) + osmotic potential (Ψ_s)
 - **1.** Water potential a measure used to predict the direction of water flow (from high to low)
 - a) Pressure potential turgor pressure (associated with cell growth & expansion)
 - b) Osmotic potential can be used to regulate turgor regulates plant water movement
- **II.** Water and mineral absorption by roots
 - A. Absorption of water by roots
 - 1. Driven by transpiration negative pressure in xylem draws water in through free space water must move through living cells of endodermis
 - 2. Root pressure (driving force when transpiration is low high humidity)
 - a) Solutes (sugars) built up in roots cause an osmotic drive of water from surrounding media solution to inner root (i.e., water moves from higher potential to lower potential)
 - b) Xylem transport driven by positive pressure source for guttation
- **III.** Uptake of mineral nutrients: two theories (mass flow and active transport)
 - A. Mass Flow probably PASSIVE
 - 1. Movement of ions by "sweeping" effect major source of nutrients
 - 1. Minerals may flow with water into root by "facilitated" diffusion
 - B. Active uptake of minerals
 - 1. Energy-requiring transport of ions into cells of the cortex (mostly minerals in relatively low abundance in soil solution potassium, nitrate, etc.)
 - 2. Movement into xylem is blocked by special barrier (Casparian strip of an endodermis) promotes active transport
 - a) Endodermis (with Casparian strip) requires that molecules pass through a plasma membrane to enter (or leave) the vascular cylinder
- IV. Availability of nutrients
 - A. Soil a net negative charge
 - B. Soil environment pH, texture, organic matter, moisture, etc.
- V. Xylem transport
 - A. Mechanism of xylem transport (cohesion-adhesion-tension hypothesis)
 - 1. Tracheids and vessels usually dead, empty cells
 - 2. Transport by bulk flow driven by transpiration
 - a) Transpiration causes "suction" and negative pressure on water in xylem
 - **3.** Important characteristics of water
 - a) Cohesion attraction of water molecules to each other
 - b) Adhesion attraction of water to other molecules (like cell walls)
 - c) Tension ability of water to withstand negative pressure
- VI. Mineral nutrition
 - A. CHOPKNS CaFe Mg B Mn CuZn Cl Mo
 - 1. CHO carbohydrates
 - 2. P ATPK enzymes & stomates N proteins
 - S amino acidsCa membranesFe ETS & photosynthesisMg chloro.B CHO breakdownMn, Cu, Zn enzymesCl OECMo enzymes